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Abstract
Effects of macromolecular crowding on structural and functional properties of ordered proteins, their folding, interactability, and 
aggregation are well documented. Much less is known about how macromolecular crowding might affect structural and functional 
behaviour of intrinsically disordered proteins (IDPs) or intrinsically disordered protein regions (IDPRs). To fill this gap, this review 
represents a systematic analysis of the available literature data on the behaviour of IDPs/IDPRs in crowded environment. Although 
it was hypothesized that, due to the excluded-volume effects present in crowded environments, IDPs/IDPRs would invariantly fold 
in the presence of high concentrations of crowding agents or in the crowded cellular environment, accumulated data indicate that, 
based on their response to the presence of crowders, IDPs/IDPRs can be grouped into three major categories, foldable, non-foldable, 
and unfoldable. This is because natural cellular environment is not simply characterized by the presence of high concentration 
of “inert” macromolecules, but represents an active milieu, components of which are engaged in direct physical interactions and 
soft interactions with target proteins. Some of these interactions with cellular components can cause (local) unfolding of query 
proteins. In other words, since crowding can cause both folding and unfolding of an IDP or its regions, the outputs of the plac-
ing of a query protein to the crowded environment would depend on the balance between these two processes. As a result, and 
because of the spatio-temporal heterogeneity in structural organization of IDPs, macromolecular crowding can differently affect 
structures of different IDPs. Recent studies indicate that some IDPs are able to undergo liquid–liquid-phase transitions leading to 
the formation of various proteinaceous membrane-less organelles (PMLOs). Although interiors of such PMLOs are self-crowded, 
being characterized by locally increased concentrations of phase-separating IDPs, these IDPs are minimally foldable or even non-
foldable at all (at least within the physiologically safe time-frame of normal PMLO existence).
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Introduction

Macromolecular crowding and complexity 
of the cellular environment

Cell interior is known to be extremely crowded due to 
the presence of high concentrations (up to 400 mg/ml) of 
various biological macromolecules, such as carbohydrates, 
nucleic acids, and proteins [1]. This crowded environment 
[2, 3] imposes considerable restrictions on the amount of 
free water [1, 2, 4–7], decreases accessible volume (since 
macromolecules occupy a significant fraction of the cellular 
volume (typically 20–30%), the volume occupied by these 
solutes is unavailable to other molecules, because two mol-
ecules cannot be in the same place at the same time) [4, 8], 
causes confinement [9], as well as affects solvent viscosity, 
thereby modulating intracellular diffusion [10–12]. Recent 
study, where the conditions of macromolecular crowding 
were modelled by solutions containing high concentrations 
of a model “crowding agent” polyethylene glycol, revealed 
that the crowder is also able to induce noticeable changes in 
the solvent properties of water, such as solvent dipolarity/
polarizability, hydrogen-bond donor acidity, and hydrogen-
bond acceptor basicity [13].

Thermodynamically, the effects of the crowded environ-
ment on chemical reactions are attributed to the excluded-
volume concept [2–4, 8, 9]. It was pointed out that the 
crowded environment of biological fluids, and especially 
related excluded-volume effects, may have significant influ-
ence on conformational stability and structure of biologi-
cal macromolecules [3, 14–17] and alter macromolecular 
equilibrium, affecting protein folding [18–20], efficiency of 
various biological reactions [4, 18, 19], binding of small 
molecules, enzymatic activity, protein–nucleic acid inter-
actions, protein–protein interactions [3, 21], and rates and 
extent of protein aggregation and amyloid fibril formation 
[22–24]. Furthermore, the efficiency of excluded-volume 
effects posed by a crowder is known to be dependent on 
the relative hydrodynamic dimensions of crowder and tar-
get molecule (crowdee), with the strongest effects being 
ascribed to a situation, where the crowder and the crowdee 
have comparable hydrodynamic volumes [25–28]. However, 
when the crowder volume becomes too large, larger “caves” 
will be formed between the crowder molecules that could 
accumulate more than one molecule of crowdee. In other 
words, although globally accessible volume will decrease 
in the presence of such large crowder, locally accessible 
volume might increase [25]. Recently, it was pointed out by 
Kim Sharp that when the steric effects of macromolecular 
crowders and small molecules, such as ions, are treated on 
an equal footing, small molecules act as more efficient crow-
ders than the large macromolecules [29]. Although based on 

these observations, an important conclusion was made that 
purely excluded-volume effects from macromolecules are 
more complex than commonly assumed (and potentially are 
much smaller than generally believed), it was also pointed 
out that high concentrations of macromolecules in the cell 
serve as a foundation of the significant non-ideality [29]. 
Therefore, a significant caution should be used while using 
high concentrations of “inert” macromolecules (which, in 
fact, can make specific interactions with proteins and nucleic 
acids) in experiments in vitro to avoid introduction of unan-
ticipated intersolute interactions [29].

Although, in recent years, the significance of macromo-
lecular crowding as important but mostly neglected vari-
able in biochemical studies is gaining attention [4, 6], the 
principle shortcoming of a typical test-tube experiment 
dedicated to the analysis of a biological macromolecule or 
a biochemical reaction continues to be a failure to acknowl-
edge this phenomenon. In fact, macromolecular crowd-
ing is not typically included as a constituent of standard 
“physiological conditions”, and the vast majority of in vitro 
experiments are usually performed under the relatively ideal 
thermodynamic conditions of low protein and moderate salt 
concentrations. One of the reasons for this negligence is the 
lack of general understanding of what should be looked at 
(confinement, excluded volume, changed solvent properties 
of water, or altered viscosity) while designing the conditions 
that would appropriately model biological fluids. Tradition-
ally, the effect of excluded volume on the behaviour of query 
compounds is examined experimentally using concentrated 
solutions of some crowding agents, such as polymers (e.g., 
polyethylene glycol, Ucon, polyvinylpyrrolidone, dextran, 
Ficoll, etc.) or highly soluble “inert” proteins (e.g., lysozyme 
or serum albumin) [8, 22]. Crowded cellular environment 
alters molecular diffusion, and the corresponding effects of 
such environment on the translational mobility can also be 
modelled by synthetic crowders, concentration, and size of 
which can modulate probe microviscosity [30]. As far as 
modelling of the confined intracellular space is concerned, 
one of the related approaches includes encapsulation of a 
target protein in silica glass using the sol–gel techniques to 
create a crowded microenvironment [31, 32]. Although the 
fraction of the total volume excluded by the silica matrix is 
lower than the fractional volume occupied by macromol-
ecules in living cell [14, 15], the size of protein-occupied 
pores in these gels has the same order of magnitude as the 
diameter of protein [31]. Furthermore, solvents can easily 
permeate silica matrix due to the porosity of the resulting 
glass, whereas the encapsulated macromolecules cannot gen-
erally escape [14]. This sol–gel glass encapsulation was used 
for the analysis of several proteins at the variety of solvent 
conditions [33–36].

One should keep in mind that the potential effects of cel-
lular environment on structural properties, conformational 
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behaviour, and functionality of proteins are much more 
complex than just the presence of aforementioned effects 
imposed by macromolecular crowding. For example, in 
a recent study, it has been pointed out that, in addition to 
being an energy source for biological reactions, adenosine 
triphosphate (ATP) might be considered as a biological 
hydrotrope, i.e., it belongs to a group of small molecules 
that are able to solubilize hydrophobic molecules in aque-
ous solutions [37]. In fact, Hymann and co-workers have 
shown that ATP reduces aggregation and enhances protein 
solubility. More importantly, ATP, being added at physi-
ologically relevant concentrations (5–10 mM), can inhibit 
liquid–liquid-phase separation in the solutions of purified 
intrinsically disordered protein, fused in sarcoma (FUS), 
leading to the formation of liquid droplets, and efficiently 
dissolve preformed FUS droplets [37]. Therefore, ATP acts 
as a crowd controller [38]. Furthermore, other nucleotides, 
such as guanosine triphosphate (GTP), as well as adenosine 
diphosphate (ADP) and adenosine monophosphate (AMP) 
were able to dissolve the FUS droplets (although ADP and 
AMP did it at higher concentrations than ATP and GTP) 
[37]. Based on these observations, the authors hypothesized 
that high intracellular concentrations of ATP, which has long 
been a puzzle, are needed to keep IDPs soluble and are used 
as a means that help to regulate proteostasis in vivo [37]. In 
agreement with these considerations, a more recent work 
of Weeks and co-workers revealed that, in Xenopus oocyte 
nucleoli, ATP has a dual role in the maintenance of protein 
solubility, acting as an endogenous hydrotropic agent and 
also participating in the energy-dependent destabilization 
of nucleolar aggregates preceding their hydrotropic solubi-
lisation [39]. Therefore, although the actual mechanisms of 
such hydrotrope hydrolysis-independent action of ATP (the 
presence of which is sufficient to solubilize aggregated pro-
teins) are not established and debatable, this study provides 
interesting insights into certain critical components of the 
cell apart from just macromolecular crowding.

Overcrowding as a next level of cellular complexity

Although macromolecular crowding clearly complicates 
the reliable analysis of biological processes, the cellular 
complexity is further increased by the overcrowding phe-
nomenon, which reflects the fact that the cellular distribu-
tion of different biological macromolecules is highly inho-
mogeneous [40], as they are often assembled into specific 
intracellular bodies, known as non-membranous cytoplas-
mic/nucleoplasmic granules, or RNA foci, or proteinaceous 
membrane-less organelles (PMLOs) [41]. Being abundantly 
found in the cytoplasm as well as inside the nucleus, mito-
chondria, and chloroplasts [42, 43], these granules/foci are 
principally different from the classical membrane-encap-
sulated organelles (chloroplasts, endoplasmic reticulum, 

Golgi apparatus, lysosomes, nucleus, mitochondria, and 
vacuoles) by the fact that their components directly contact 
with the cytoplasm/nucleoplasm/stroma/matrix because of 
the lack of the surrounding membrane [44, 45]. PMLOs are 
many, have specific distribution patterns within the cell, 
and contain specific proteins and RNAs (and/or DNAs) [42, 
43, 46]. Size of these highly dynamic assemblages, whose 
structural integrity and biogenesis are exclusively defined 
by protein–protein, protein–DNA, and/or protein–RNA 
interactions [47, 48], depends on the dimensions of a cell 
which they are residing in [49]. Because of their liquid-
like behaviour, such as the ability to become reversibly 
deformed when encountering a physical barrier, dripping, 
fusion, and wetting, PMLOs are considered as a different 
liquid state of the nucleoplasm, cytoplasm, matrix, or stroma 
[50–55]. They are formed via highly controlled biological 
liquid–liquid demixing phase separation (also known as 
liquid–liquid-phase transition, LLPT) or coacervation 
[49, 54–60]. This macromolecular condensation defines 
the overcrowded nature of PMLOs. In fact, concentration 
of protein(s) that underwent LLPT in these cellular liquid 
droplets is 10- to 300-fold higher than the content of the 
same protein(s) in dilute phase [55, 56, 60]. Furthermore, 
even globally, PMLOs are more crowded than their sur-
rounding cellular fluids. For example, in the Cajal bodies, 
speckles, and nucleoli of the nucleus of Xenopus oocyte, 
the total protein concentrations were 136, 162, and 215 mg/
mL, respectively, whereas total protein concentration in the 
surrounding nucleoplasm was 106 mg/mL [61]. Therefore, 
the interior of PMLOs represents an overcrowded milieu, 
because the overall protein concentrations found that there 
noticeably exceeds protein contents of the crowded cyto-
plasm and nucleoplasm [40].

Major constituents found in all PMLOs are proteins. 
Although different cellular bodies contain different sets 
of the resident proteins, many PMLO-associated proteins 
are intrinsically disordered or hybrid proteins containing 
ordered domains and intrinsically disordered protein regions 
[40, 41, 43, 46, 58, 62–69]. These observations suggested 
that the fluidity and highly dynamic nature of the over-
crowded PMLOs, as well as their assembly/disassembly 
cycles, morphology, and structure are all depend on protein 
intrinsic disorder.

Intrinsically disordered proteins

Many protein functions are not directly linked to the pres-
ence of unique structures, with numerous biologically active 
proteins either containing intrinsically disordered protein 
regions (IDPRs) or even being entirely disordered. In fact, 
all proteomes abundantly contain such structure-less pro-
teins [70–74]. Structurally, these intrinsically disordered 
proteins (IDPs) and IDPRs are described in terms of highly 
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dynamic ensembles containing rapidly interconverting 
conformations [73, 75, 76]. Despite of their lack of stable 
tertiary and/or secondary structure, such IDPs and hybrid 
proteins possessing ordered domains and functional IDPRs 
are engaged in extremely diversified biological activities, 
ranging from signal transduction to recognition, and from 
regulation of the function of their binding partners and to 
promotion and guidance of the assembly of supra-molecular 
complexes [73–106]. Often, IDPRs serve as primary tar-
gets for various posttranslational modifications (PTMs) [95, 
107–109], and many IDPs/IDPRs are subjected to alternative 
splicing [110–112]. Functions of IDPs and IDPRs comple-
ment functionality of ordered proteins and domains [73, 75, 
77, 78, 80, 83, 84, 87, 88, 92, 97, 98, 100, 113–120], and 
multiple functional advantages are ascribed to IDPs/IDPRs 
to explain their prevalence in various proteomes and engage-
ment in various biological processes [73, 77, 97, 121–124]. 
Among these functional advantages are:

• large capture radius that is utilized in more efficient 
search within the interaction space leading to the 
increased interaction speed;

• the ability to be engaged in a wide spectrum of encounter 
complexes with non-native interactions, but productive 
for binding;

• the ability to form binding interfaces that are large com-
pared to the IDP/IDPR own size;

• the ability to overcome steric restrictions;
• the presence of energetic frustrations in the binding 

interfaces that define the IDP/IDPR-binding promiscu-
ity [125];

• the ability to be regulated by rapid degradation;
• the ability for self-regulation and self-recognition;
• the ability to have various entropic chain activities;
• the ability of a single IDP/IDPR to interact with multi-

ple structurally diverse partners (one-to-many binding 
mode);

• the ability of many IDPs/IDPRs to interact with a single 
partner (many-to-one binding mode);

• the ability to fold (at least partially) into a specific struc-
ture at interaction with a specific partner;

• the ability to fold differently according to the template 
provided by different binding partners;

• the ability to preserve noticeable disorder in bound state 
(i.e., the presence of binding fuzziness);

• the ability to form complexes with binding partners using 
induced folding and/or conformational selection mecha-
nisms;

• the ability to be regulated and controlled via multiple 
posttranslational modifications;

• the ability to be regulated by alternative splicing;
• the presence of overlapping binding sites;
• the ability to masking (or not) of interaction sites;

• the ability to escape unwanted interactions via functional 
misfolding [126];

• the ability to be engaged in binding ‘chain reactions’, 
where interactions with specific partners generate the for-
mation of new binding sites for subsequent interactions 
with other partners;

• the ability to serve as complex interaction centres (scaf-
folds);

• the ability to serve as hubs controlling and regulating 
sophisticated protein–protein interaction networks;

• the ability to act as stochastic machines;
• the presence of very different evolutionary rates;
• the existence of conditional (cryptic, dormant, or tran-

sient) disorder, where functionality of an ordered pro-
tein requires its local or even global functional unfolding 
[127, 128];

• the ability to have multiple unrelated functions (moon-
lighting).

It is recognized now that functional diversity of IDPs/
IDPRs can be related to (or originate from) their extreme 
structural heterogeneity [129–131]. Here, a structure of a 
protein molecule represents a mosaic of differently (dis)
ordered segments, such as foldons (spontaneously fold-
able regions), non-foldons (regions that do not fold), semi-
foldons (semi-folded regions), inducible foldons [regions 
that can at least partially fold at interaction with binding 
partner(s)], and unfoldons (regions that need to undergo 
functional unfolding to make protein active) [129–131]. In 
addition to such a mosaic structure, where different parts 
of a protein molecule are (dis)ordered to different degrees, 
the distribution of foldons, non-foldons, inducible foldons, 
semi-foldons, and unfoldons is not steady, but constantly 
changes in time. As a result, protein structure is not crystal-
like, but is always morphing over time, with a given protein 
segment being able to have a different structure at a different 
time point [129, 130].

An important consideration should be added here 
related to the complexity of the disorder-based function-
ality. In their recent work, Naganathan and co-workers 
emphasized an importance of collapsed states of IDPs 
in determining protein function [132]. In fact, using the 
DNA-binding domain of the prokaryotic protein cytidine 
repressor (CytR) these authors showed that although this 
protein is substantially disordered in its unbound form, 
it effectively folds on binding DNA and is also able to 
undergo a temperature-induced coil-to-globule transition in 
the absence of DNA [132]. Surprisingly, this temperature-
driven formation of the more collapsed state followed the 
second order-like transition and was accompanied by the 
disruption of residual structure in CytR [132]. The maxi-
mal structural heterogeneity was observed at temperatures 
~ 310–313 K, and at 310 K, conformational ensemble of 
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CytR constituted a mixture of forms, such as extended 
partially helical structures and collapsed conformations 
with little secondary structure [132]. The authors also 
showed that this protein preserved capability to interact 
with DNA at all conditions studied, and that it possessed 
complex binding isotherms arising from binding heteroge-
neity [132]. These observations suggest that functionality 
of IDPs does not always rely on the naturally unfolded 
configurations or some folded forms induced by binding 
to specific partners. Instead, non-native collapsed states 
might be functional too. It is likely that they serve as an 
alternative functional species whose populations could be 
tuned by cellular machinery for precise functional control.

Finally, because of their natural abundance, multitude 
of biological functions, and important regulatory roles of 
IDPs/IDPRs in various biological processes, misbehaviour 
of many IDPs/IDPRs is commonly associated with various 
human maladies [133–139].

IDPs/IDPRs in crowded environment: 
the good, the bad, and the ugly

We would like to start this section of the review with the 
important notion that the currently available data on the 
effects of macromolecular crowding on structural proper-
ties of proteins in general (and IDPs in particular) are rather 
incomplete. In fact, most studies have been focused on the 
analyses of the effects of crowing agents on conforma-
tional stability of proteins in typical unfolding experiments, 
where proteins that are folded in buffer at room tempera-
ture undergo heat denaturation or chemical unfolding in the 
presence or absence of crowders [18, 19, 140]. On the con-
trary, the number of studies directly probing the effects of 
macromolecular crowding on structural properties of IDPs/
IDPRs is rather limited. However, even these limited results 
are sufficient for making some important conclusions on 
how crowded environment can affect structural behaviour 
of IDPs/IDPRs.

We will show below that, based on their response to the 
presence of artificial- and natural-crowding agents, IDPs/
IDPRs can be grouped into three major categories, foldable, 
non-foldable, and unfoldable. Here, foldable IDPs/IDPRs 
can fold (at least partially) at the artificial crowded envi-
ronment and inside the living cells. This (partial) folding) 
is likely to be driven by the crowding-induced formation 
of a hydrophobic core. Non-foldable IDPs remain mostly 
unstructured at the crowded conditions. Some of these non-
foldable by crowding IDPs may require another protein (or 
DNA, or RNA, or some other natural-binding partners) to 
provide a framework for structure formation. Finally, unfold-
able IDPs/IDPRs undergo further unfolding being exposed 

to crowding agents. This is likely due to the interaction of 
such IDPs/IDPRs with crowding agents.

They should fold: expected outcomes 
of the macromolecular crowding on IDPs

Despite their lack of stable structure in the unbound state, 
many IDPs/IDPRs are known to at least partially fold at 
interaction with their specific partners, such as other pro-
teins, nucleic acids, membranes, or small molecules [73, 77, 
78, 80, 82–85, 87–89, 92, 101, 141, 142]. The bound forms 
of IDPs/IDPRs are either tightly folded or remain substan-
tially disordered [84, 103, 109, 143], and some of them can 
adopt different structures, being bound to different partners 
[101, 109, 143–145]. The capability of an IDP/IDPR to 
functionally fold is related (at least partially) to the presence 
of noticeable residual structure in their unbound state, which 
is reflected in their exceptional spatio-temporal heterogene-
ity [130]. Irrespectively of the scale of their binding-induced 
folding, it is expected that interaction with specific binding 
partners would result in the decrease of the hydrodynamic 
dimensions of IDPs/IDPRs (since this is typically the case 
for protein-folding process).

Because of all this, and due to the fact that, as a rule, 
structures of IDPs/IDPRs is extremely responsive to changes 
in their environment, it was expected that IDPs/IDPRs could 
be sensitive to the presence of crowding agents, and that 
their effective folding and compaction would be observed 
under the conditions of macromolecular crowding. This 
hypothesis was based on the thermodynamic principles 
of excluded volume, according to which the presence of a 
space-filling substance might significantly affect the protein-
folding process by favouring a more compact (folded) state 
over the more extended (unfolded) form [7]. As a matter 
of fact, at the early stages of the IDP research, when the 
existence of intrinsic disorder was still questioned by many 
researchers, this argument (IDP/IDPR has to fold in crowded 
cellular environment, and, therefore, intrinsic disorder is bio-
logically irrelevant) was frequently brought by many col-
leagues in private conversations and used by reviewers to 
illustrate the absurdity and impossibility of protein intrinsic 
disorder phenomenon.

However, not everything is as simple with macromo-
lecular crowding as it seems. In fact, excluded volume is 
not the only mechanism that needs to be taken into account 
while considering the effects of crowded environments on 
chemical reactions or folding, function, structure, and ther-
modynamics of a protein molecule [18]. As it was already 
emphasized, high concentrations of macromolecules change 
viscosity and solvent properties of crowded milieu. Further-
more, biological macromolecules (and even synthetic poly-
mers used as crowding agents in vitro) are not inert entities, 
and in addition to perturbing diffusion and creating confined 
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environment, crowders can be engaged in direct physical 
interactions with the molecule of interest [18]. As a result, 
globally, macromolecular crowding might affect protein 
structure, folding, shape, conformational stability, binding of 
small molecules, enzymatic activity, protein–protein inter-
actions, protein–nucleic acid interactions, and pathological 
aggregation [19]. Therefore, because of all the different ways 
of how crowded environment can affect protein structure, the 
outcomes of the addition of high concentrations of crowding 
agents are not too transparent.

Curiously, a recent computational analysis, where 
a coarse-grained model was used to represent proteins 
with varying sequence contents and investigate changes 
in the polypeptide chain dimensions caused by the purely 
repulsive spherical crowders, revealed that the extent of 
crowding-induced compaction depends on the properties 
of the protein itself and not only on the size and con-
centration of the crowder as predicted by the excluded-
volume theory [146].

The goal of this review is to analyze available literature 
describing the effects of crowed environments (both natu-
ral, inside the cell, and artificial, modelled by addition of 
high concentrations of polymers) on structural properties 
of intrinsically IDPs/IDPRs. Although the amount of cur-
rently available information on this subject is rather lim-
ited, the analyzed data allow us to make some important 
conclusions and generalizations. For example, it became 
clear that, according to their response to macromolecular 
crowding, IDPs/IDPRs can be grouped into three broad 
categories: (partially) foldable, non-foldable, and unfold-
able. In other words, crowded milieu can cause folding (at 
least partial) of some IDPs/IDPRs, or shows no noticeable 
effect on structure of other IDPs/IDPRs, or even results 
in some further unfolding of IDPs/IDPRs containing 
residual structure. Therefore, we will talk below about 
representatives of these three categories, which constitute 
the good, the bad, and the ugly sides of intrinsic disorder 
in crowded milieu.

The good: (partially) foldable IDPs/IDPRs

We will start with the presenting examples of IDPs/IDPRs 
that are able to (partially) fold in the crowded milieu, i.e., 
“good” IDPs/IDPRs behaving as expected based on the 
excluded-volume theory. According to the Le Chatelier’s 
principle, the existence of the volume exclusion should 
favour compaction as compact state occupies less space 
[147]. If macromolecular crowding could increase the ratio 
of folded (compact) to unfolded (less compact) protein by 
a factor of 100, this would corresponds to the 3 kcal/mol 
(~ 12.6 kJ/mol) of stabilization at room temperature [148]. 
However, the energetic contribution of an actual crowding 

effect was estimated to be in a range of be 1–4 kJ/mol 
for 100–300 mg/mL of crowding agents [149, 150]. Since 
essentially larger energy is required to fold a protein (e.g., 
to change the folded fraction from 10% (ΔGF = 5.3 kJ/mol) 
to 90% (ΔGF = − 5.3 kJ/mol), a free-energy change of ca. 
11 kJ/mol is needed), it would be a mistake to expect to 
systematically observe the dramatic effects of crowding 
agents on fractions of folded proteins [151]. Furthermore, 
even IDPs/IDPRs with “good” behaviour (i.e., those which 
are able to fold in crowded environment) are not made 
equal. In fact, due to their highly heterogeneous structural 
organization, it is obvious that different IDPs can show 
different responses to the macromolecular crowding that 
can range from the full-scale folding to rather moderate 
partial ordering.

IDPs undergoing complete folding in crowded milieu

An illustrative example of the research directly probing the 
effect of macromolecular crowding on a foldable protein that 
is unfolded in physiological pH buffers at room temperature 
is given by the analysis of the conformational behaviour 
of a destabilized mutant of the immunoglobin G-binding 
domain of protein L (ProtL) from Streptococcus magnus 
[151]. The wild type of ProtL is a typical mesophilic protein 
with the molecular mass of 7 kDa that unfolds in a revers-
ible two-state reaction. The ProtL variant contained seven 
destabilizing lysine to glutamate substitutions (K×7E) mak-
ing it an obligate halophile that was preferentially unfolded 
under “physiological conditions” [152]. In fact, based on 
the results of the solution NMR analysis in diluted buffer at 
room temperature, it was concluded that 84% of the K×7E 
variant molecules populated the unfolded state, whereas only 
0.1% wild-type protein molecules were in the unfolded state 
at the identical conditions [148]. However, at addition of salt, 
K×7E variant was able to fold to a structure that was indis-
tinguishable from that of the wild-type protein [148, 152, 
153]. Combined NMR and circular dichroism (CD) analysis 
indicated that the addition of 200 mg/mL Dextran-20 to this 
K×7E variant shifted its conformational equilibrium from 
preferentially unfolded form toward the folded state, result-
ing in a structure that matches the structure of the wild-type 
protein [151]. Careful comparison of the thermodynamic 
effects of 200 mg/mL of Dextran-20 on the well-folded wild-
type ProtL, salt-folded form of its K×7E mutant, and mostly 
unfolded K×7E mutant in water revealed that the addition of 
this crowder caused comparable changes in the folding equi-
librium constant (ΔΔGU ≈ 2 kJ/mol) for all three forms of 
this protein [151]. This observation indicated that the scale 
of the stabilizing effect of macromolecular crowding is inde-
pendent of the starting stability of the protein. Importantly, 
this study also clearly indicated that crowding can shift the 
conformational equilibrium toward the folded form when the 
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polypeptide is in the transition region between folded and 
unfolded states [151].

In a series of elegant studies, the group of Terrence G. 
Oas and co-workers conducted a multifactorial analysis of 
the effect of various factors on the ribonuclease P (RNase 
P) protein from Bacillus subtilis, which, according to circu-
lar dichroism and NMR studies, behaves in 10 mM sodium 
cacodylate low-ionic strength buffer at neutral pH as a typi-
cal extended IDP [154]. The B. subtilis RNase P was shown 
to gain native α/β structure at addition of various small mol-
ecules, such as anions or osmolyte trimethylamine N-oxide 
(TMAO) [154]. It was pointed out that the tightly coupled 
folding and binding of this protein in the presence of ani-
ons is determined by the preferential binding of anions to 
the folded state of RNase P (small population of which was 
hypothesized to be present in the conformational ensemble 
of this natively unfolded protein at low-ionic strength condi-
tions), whereas TMAO-induced folding represents an inde-
pendent process that does not interfere with anion-induced 
folding, and where TMAO molecules do not compete with 
anions for the two high-affinity anion-binding sites [154]. 
Subsequent careful thermodynamic analysis confirmed 
these observations, and indicated structural similarity of the 
osmolyte- and anion-folded states of RNase P [155]. The 
existence of a small population of native molecules under the 
low-ionic strength conditions even in the absence of anions 
and TMAO was later conformed by NMR-detected amide 
hydrogen exchange (HX) [156]. Curiously, although, in the 
original studies, no intermediate was detected in TMAO-
induced folding of RNase P [154, 155], subsequent kinetic 
studies combined with the equilibrium “co-titration” experi-
ments where both TMAO and urea were used to produce a 
urea–TMAO titration revealed the presence of a significantly 
populated intermediate state in the RNase P protein-folding 
process [157]. Complex NMR analysis of this intermedi-
ate state suggested that it contained the majority of helix B 
and the central β-sheet, whereas its N- and C-terminal heli-
cal regions were mostly unfolded [158]. It was also pointed 
out that the pathways of coupled folding and binding of the 
B. subtilis RNase P can be regulated by the concentration 
of ligand, where the order of binding and conformational 
change is ligand concentration-dependent, and where protein 
conformational dynamics is markedly and variably affected 
by the ligand [159].

IDPs undergoing significant but partial folding in crowded 
milieu

As described in the previous section, complete macromo-
lecular crowding-induced folding of the PrtL K×7E mutant 
represents an exception, and the majority of IDPs/IDPRs 
undergo only partial folding in crowded milieu. Several 
illustrative examples of such behaviour, where an IDP folds 

in the presence of crowders to a molten globule-like con-
formation, but fails to form a state with the rigid side-chain 
packing characteristic of the well-folded ordered proteins, 
are discussed below.

Although, in its heme-bound state, a small globular pro-
tein cytochrome c has a well-folded mostly α-helical struc-
ture, removal of the heme causes dramatic destabilization of 
this protein, which is mostly unstructured in aqueous solu-
tions [160], and, at acidic pH, adopts a random coil-like con-
formation [161]. It was also pointed out that, similar to many 
other acid-unfolded proteins, at acidic pH, apo-cytochrome 
c undergoes refolding to a compact conformation with the 
properties of a molten globule due to the binding of the 
anion that minimizes the intramolecular charge repulsion 
causing the initial unfolding [162–164]. Comparable struc-
tural changes from mostly unfolded to molten globule-like 
conformation were induced in apo-cytochrome c by addi-
tion of high concentrations of Dextran with the average 
molecular mass of 35,000 Da [165]. Furthermore, thermo-
dynamic analysis of the Dextran-induced folding of the apo-
cytochrome c from the unfolded (U) to molten globule (MG) 
state suggested that the observed structural transformation 
was characterized by the ΔG0

U-MG value of 10.5 kJ/mol that 
agreed well with the ΔG0

U-MG value of 11 kJ/mol obtained 
from two-state analysis of salt-induced MG formation in 
this protein [166]. Formation of MG is independent of rigid 
side-chain packing needed for the stabilization of ordered 
forms of globular proteins. The major driving force of anion-
induced folding of an acid-unfolded state is the preferential 
interaction of chloride anions with the positively charged 
groups of the compact MG state of apo-cytochrome c [162]. 
On the other hand, since addition of inert Dextran does not 
affect the charge state of a protein, the formation of the more 
compact MG state over the more expanded acid-unfolded 
state of apo-cytochrome c in the presence of this crowder 
was explained by the ability of dextran to decrease the vol-
ume available to a macrosolute, i.e., due to the existence of 
the excluded volume [165].

Another example of a system capable of rather substantial 
crowding-induced folding is given the C-terminal domain 
of the histone H1 [167]. It is known that, structurally, H1 
linker histone can be separated into three domains, a central 
globular domain (~ 80 residues) consisting of a three-α-helix 
bundle and a β-hairpin, and two disordered tails, a short 
N-terminal domain (20–35 residues), and a long C-terminal 
domain (~ 100 residues) [168]. The C-terminal tail is char-
acterized by high content of disorder-promoting residues, 
containing ~ 40, ~ 12, and ~ 17% of Lys, Pro, and Ala resi-
dues. Because of this highly biased amino-acid composition, 
unbound state of this domain has a little structure in aqueous 
solution. However, C-tail serves as the primary site of H1 
binding to chromatin in vivo [169, 170]. Furthermore, this 
domain was shown to cooperatively fold on interaction with 
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DNA, with the DNA-bound form of C-tail being character-
ized by the extremely stable structure that includes α-helix, 
β-sheet, turns, and loops [171]. Furthermore, in the presence 
of high concentrations of crowding agents, such as Ficoll 
70 and PEG 6000, this functionally important domain was 
shown to undergo extensive folding, forming the MG-like 
state [167].

IDPs undergoing limited partial folding in crowded milieu

In addition to utilization of NMR and CD, which are spec-
troscopic techniques sensitive to crowding-induced changes 
in protein structure, compaction of several query proteins in 
crowded milieu was evaluated by small-angle neutron scat-
tering (SANS) and single-molecule fluorescence detection 
in combination Förster resonance energy transfer (FRET).

For example, the effects of high concentrations of a small 
globular protein, bovine pancreatic trypsin inhibitor (BPTI), 
on the hydrodynamic dimensions of an IDP, N protein of 
bacteriophage λ (the λ N protein) were studied by SANS 
with  D2O-based contrast matching [172]. The λ N protein 
is a small transcriptional anti-termination factor, which is 
highly disordered in isolation, as evidenced by NMR and cir-
cular dichroism spectroscopy [173]. Although the λ N pro-
tein is mostly disordered in isolation, its N-terminal region 
(the first 22 amino acids) containing the arginine-rich motif 
is capable of folding to an α-helical conformation at bind-
ing to a specific site on the RNA transcript [174], whereas 
other regions of the λ N protein can interact with RNA poly-
merase and other components of the transcription complex 
[175]. It was indicated that although many aspects of SANS 
are similar to small-angle X-ray scattering, SANS have an 
important advantage of being scattered by the atomic nuclei. 
As a result, different isotopes of the same element can have 
clearly distinguishable scattering properties. The presence 
of such differential scattering for hydrogen vs. deuterium 
represents a foundation of the technique of contrast variation 
(or contrast matching). Here, a contribution of the bystander 
molecules to the SANS profile can be eliminated by their 
partial deuteration, because, at the certain ratio of  H2O to 
 D2O, known as a match point, the scatter from the partially 
deuterated molecule will equal that of the solvent, making 
that molecule invisible for SANS [176]. In the SANS analy-
sis of the effects of high concentrations of BPTI on the λ N 
protein, the exclusive visualization of the completely deu-
terated λ N protein in this complex mixture was achieved 
by eliminating the scattering contrast between the solvent 
and unlabelled BPTI via adjusting the  D2O concentration 
of the solvent [172]. These experiments showed that the 
increase in the BPTI concentration was accompanied by 
detectable decrease in the dimensions of the λ N protein, 
from Rg = 38 ± 2 Å in diluted solution to Rg = 30 ± 4 Å in 
the presence of 150 mg/mL BPTI [172]. Importantly, the 

Rg of 38 Å measured for the λ N protein in the absence 
of crowding agent corresponded to a monomeric unfolded 
protein composed of 107 residues [177]. However, the Rg 
of 30 Å determined for the λ N protein in the presence of 
high concentrations of BPTI was noticeably larger than the 
Rg expected for a globular well-folded protein of similar 
molecular mass (e.g., ribonuclease A, a globular protein of 
124 amino-acid residues, has the Rg of 14.8 Å [178, 179]). 
Comparable SANS-based data were obtained for this uni-
formly labelled IDP, when high concentrations of equine 
metmyoglobin were used to create crowded milieu [180]. 
Therefore, crowding caused only partial collapse/folding of 
the λ N protein.

An important advantage of single-molecule fluorescence 
detection in combination with FRET is its ability not only to 
analyze the effect of macromolecular crowding on structural 
properties of a query protein, but also to look at the effects 
of crowded environment on the conformational distributions 
within the dynamic structural ensemble of an IDP by look-
ing at one protein molecule at a time. Furthermore, single-
molecule FRET can be used to study labelled IDPs even in 
the presence of very large concentrations of unlabelled sol-
utes [181]. Recently, this technique was used in the analysis 
of the effect of increasing PEG-6000 concentrations on the 
conformational ensembles of four different IDPs, such as N- 
and C-terminal segments of human prothymosin-α (ProTα-N 
and ProTα-C, residues 2–56 and 56–110, respectively), 
the binding domain of the activator for thyroid hormones 
and retinoid receptors (ACTR, residues 1–73), and the 
N-terminal domain of HIV-1 integrase (IN, residues 8–57) 
[181]. It was pointed out that these three proteins belonged 
to different IDP classes, where highly charged ProTα can-
not be folded under any known conditions, whereas ACTR 
and IN are able to fold upon binding a protein or a small 
ligand, respectively [181]. In the related FRET experiments, 
Alexa Fluor 488 and Alexa Fluor 594 were used as donor 
and acceptor fluorophores that were introduced to target 
proteins via cysteine residues incorporated at desired to 
positions to give sequence separations of 55 (ProTα-N), 54 
(ProTα-C), 72 (ACTR), and 49 residues (IN) [181]. Increase 
in the PEG-6000 concentration from 0 to 40% caused rather 
different changes in the compaction degree of four IDPRs 
analyzed in this study. In fact, in the absence of crowding 
agent, ProTα-C, ProTα-N, ACTR, and IN were characterized 
by the Rg of 35.4, 30.5, 24.9, and 20.1 Å, respectively [181]. 
These values reflected that, although behaviour of ACTR 
and IN was rather close to the behaviour of typical random 
coil-like polypeptides, ProTα-N and ProTα-C, probably due 
to their high net charges, were noticeably more expanded. 
In fact, based on the known scaling law correlating the Rg 
of unfolded proteins and their length (N) (Rg = (2.08 ± 0.19) 
N(0.598 ± 0.029)) [177], the random coil-like states of ProTα-C, 
ProTα-N, ACTR, and IN are expected to have the Rg of 22.8, 
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22.6, 26.8, and 21.3 Å. In the presence of 35% PEG-6000, 
the Rg values were decreased to 23.9, 22.6, 20.9, and 18.8 Å, 
for ProTα-C, ProTα-N, ACTR, and IN, respectively [181]. 
Although these changes corresponded to the 1.48-, 1.35-, 
1.19-, and 1.07-fold increase in the compaction degree of 
these proteins, collapsed states of all four proteins observed 
in crowded environment were still rather expanded in 
comparison with the completely folded conformations of 
globular proteins of comparable molecular mass (which are 
expected to have the Rg values in a range of 10–12 Å [182]). 
Finally, the analysis of the compaction efficiency of PEGs 
of ten different degrees of polymerization at fixed volume 
fraction of PEG revealed that the degree of compaction of 
target proteins was highly dependent on the crowder size, 
with the increase in the crowder size to about 100 monomers 
causing the monotonous collapse of IDPs (decrease in their 
Rg values), which reached a plateau for PEGs of more than 
~ 100 monomers [181].

The bad: non‑foldable IDPs/IDPRs

A very large part of the currently available literature system-
atically reports the lack of any noticeable structure-forming 
effects of high concentrations of crowding agents on IDPs.

For example, Flaugh and Lumb [183] established that 
molecular crowding modelled by the high concentrations 
(of up to 250 g/L) of the Dextrans with average molecu-
lar weights of 9.5, 37.5, and 77 kDa and Ficoll-70 did not 
induce a significant folding in two IDPs, FosAD and p27ID. 
FosAD corresponds to the C-terminal activation domain of 
human c-Fos (residues 216–310) and is functional for inter-
acting with transcription factors in whole-cell extract [184]. 
p27ID corresponds to the cyclin-dependent kinase inhibition 
domain of the cell-cycle inhibitor human  p27Kip1 (residues 
22–97) and is active as a cyclin A-Cdk2 inhibitor [185]. 
Both protein domains were shown to by intrinsically disor-
dered as judged by circular dichroism (CD) spectra that were 
characteristics of the unfolded polypeptide chains, lack of 
1H chemical-shift dispersion, and negative 1H–15N nuclear 
Overhauser effects [184, 185]. In the presence of macro-
molecular crowding agents, none of these IDPs underwent 
any significant conformational change reflected in noticeable 
changes in either circular dichroism or fluorescence spectra. 
Therefore, molecular crowding effects are not necessarily 
sufficient to induce ordered structure in IDPs [183].

Calcium-binding protein  RCL offers the rare opportunity 
to study the same polypeptide chain under two drastically 
distinct folding states: as an extended IDP in its apo-form 
(RH of 3.2 nm) and as a compact folded structure in the 
 Ca2+-bound form (holo-form, RH of 2.2 nm) [186].  RCL is 
derived from the RTX-containing domain (Repeat in ToXin) 
of the adenylate cyclase toxin (CyaA) from Bordetella per-
tussis. It was recently shown that, although the structural 

contents of the apo-state and holo-state of  RCL were not 
affected by the crowding agent Ficoll 70, the protein affinity 
for calcium and thermal stability of both forms were strongly 
increased by this crowding agent [187].

Cino et al. analyzed the effect of macromolecular crowd-
ing on structural properties and conformational dynamics 
of several IDPs with different extents of residual structures 
by measuring their NMR spin relaxation parameters in the 
absence and presence of 160 mg/mL of Ficoll 70 [188]. 
1H–15N HSQC spectra of uniformly 15N labelled prothy-
mosin α (ProTα; human isoform 2), thyroid cancer 1 pro-
tein (TC-1; human), and α-synuclein (human isoform 1) in 
dilute and crowded solutions suggested that all three proteins 
remain mostly disordered under crowded conditions and 
retained their segmental motions on the nanosecond time-
scale [188]. These authors also showed that the crowded 
environment exhibited differential effects on the conforma-
tional propensity of distinct regions of an IDP [188].

Similarly, α-synuclein was shown to preserve its 
mostly unfolded conformation in the presence of several 
crowding agents [189] and even in the periplasm of the 
bacterial cells [190]. Recently, these observations were 
further conformed by the comprehensive solution NMR 
analysis of α-synuclein in the presence and absence of 
high concentrations of Ficoll or bovine serum albumin 
(BSA), which clearly indicated the inability of crowd-
ing agents to induce persistent secondary structure in this 
protein [191].

In addition, the analysis of macromolecular crowding 
on three dehydrins from Arabidopsis thaliana, Cor47, 
Lti29, and Lti30 revealed that, on the contrary to the 
hypothesis these drought-induced IDPs might acquire 
a biologically active structure upon dehydration, dehy-
drins were highly resistant to crowding-induced structural 
changes, being remarkably stable in their disordered state 
and being only modestly affected by the solvent altera-
tions [192].

One can argue that the lack of structural changes 
induced in certain IDPs by high concentrations of crowd-
ing agents can be attributed to the highly disordered 
nature in the corresponding query proteins. However, data 
recently retrieved for the Golgi reassembly and stacking 
protein (GRASP) from the fungal pathogen Cryptococcus 
neoformans (CnGRASP) illustrate that this hypothesis is 
incorrect [193]. GRASPs constitute a family of peripheral 
membrane proteins that keep the arrangement of the cis-
ternae, are needed for changes in this flattened membrane 
disk of the endoplasmic reticulum and Golgi apparatus 
according to the cell needs [194–197], and control organi-
zation of the cisternae into stacks and ribbons [198, 199]. 
In diluted solutions, even in the absence of any denatur-
ing agents, CnGRASP was characterized by structural 
features typical for the molten globular proteins [200]. 
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Addition of high concentrations of Ficoll-70, PEG-200, 
and PEG-2000 did not affect the structure of this protein, 
which retained molten globular conformation even when 
the crowding mimetic concentrations reached 40% [193].

Between the good and the bad: the two‑faced Janus 
proteins

Because of their complex mosaic and highly dynamic struc-
tures containing a set of foldons, non-foldons, inducible 
foldons, semi-foldons, and unfoldons [129–131], generally, 
the responses of IDPs/IDPRs to changes in their environment 
(e.g., to macromolecular crowding) are expected to be highly 
heterogeneous, with some their parts being able to gain more 
ordered structure in the presence of crowding agents, and 
with other parts being insensitive to macromolecular crowd-
ing. An illustrative example of such two-faced Janus proteins 
is given by a 97-residue IDP from Salmonella typhimurium, 
FlgM, which regulates flagellar synthesis [201] by binding 
the transcription factor σ28 [202]. Careful multifactorial 
analysis revealed that the crowded environment enforced 
only partial folding of FlgM, with approximately half of this 
IDP-gaining structure inside living Escherichia coli cells 
and in solutions containing high concentrations (≥ 400 mg/
mL) of BSA or ovalbumin in vitro [203]. This ability of 
crowding-induced folding of the C-terminal half of FlgM 
was shown to be associated with the functionality of this 
protein. In fact, in vitro solution NMR analysis revealed that 
free FlgM was mostly unstructured in the dilute solutions 
[204]. However, even in the unbound form, the C-terminal 
half of this protein was characterized by the deviation of  Cα 
chemical shifts from the random coil values, suggesting the 
presence of a transient secondary structure that included two 
α-helical regions, residues  M60–G73 and  A83–A90 [205]. This 
same C-terminal half of FlgM became structured as a result 
of specific binding to σ28 at the formation of the FlgM-σ28 
complex [204], and was also shown to be partially folded in 
the crowded environment [203]. On the contrary, the N-ter-
minal half of FlgM retained random coil-like conformation 
at all the studied conditions [203–205]. Therefore, FlgM 
represents a case of the two-faced Janus protein, where the 
first face is exemplified by its C-terminal half that is partially 
structured in the diluted solutions and folds further into the 
MG-like conformation in the natural and artificial crowded 
environment, whereas the second face is exemplified by the 
N-terminal half of FlgM that remains highly unstructured 
under all conditions [203].

Recently, two Late Embryogenesis Abundant (LEA) pro-
teins from A. thaliana, AtLEA4–2 and AtLEA4–5, were also 
shown to possess features of the two-faced Janus proteins 
[206, 207]. In plants (and some other organisms), LEA pro-
teins accumulate in response to abiotic stress, particularly, 
dehydration (water limitation) [208–210]. Similar to other 

hydrophilins, LEA proteins are enriched in hydrophilic and 
small residues, and the members of the group 4 LEA pro-
teins in plants are characterized by a conserved N-terminal 
region (about 80 residues long) and a C-terminal region 
variable in sequence and length. AtLEA4–2 and AtLEA4–5 
are characterized by the almost complete lack of ordered 
structure when fully hydrated [207]. However, under the 
water-deficit environments, e.g., induced by macromolecu-
lar crowding, the conserved N-terminal region of these pro-
teins undergoes transition to α-helical structure, whereas the 
variable C-terminal region remains mostly disordered [206, 
207]. Importantly, similar to FlgM, the conserved N-termi-
nal regions of the group 4 LEA proteins are necessary and 
sufficient for their chaperone-like activity under water-deficit 
conditions [206, 207].

The ugly: IDPs/IDPRs that unfold in crowded 
environment

Since any of the polymers used as model crowding agents 
can be potentially engaged in non-specific interactions with 
certain IDPs, one might expect that residual structure of 
these IDPs can be destabilized in crowded milieu, or, in 
other words, such IDPs would undergo crowding-induced 
unfolding. Several examples of this behaviour are listed 
below.

Amide hydrogen exchange (HX, efficiency of which can 
be estimated by mass spectrometry) of IDPs in highly con-
centrated polymer solutions was shown to serve as a useful 
approach for the evaluation of the IDP transient structure 
under crowded conditions [211]. Application of this tech-
nique to a transiently helical random coil domain of the 
activator of thyroid and retinoid receptor (ACTR) revealed 
that, in solutions containing 300 mg/mL of Ficoll, this IDP 
undergoes noticeable unfolding accompanied by the increase 
in its HX rate [211]. These data supported the hypothesis 
that the levels of residual structure in some IDPs can actually 
decrease in crowded milieu due to the non-specific interac-
tion of said IDPs with natural- and artificial-crowding agents 
[211].

Although FlgM was described as a Janus protein-contain-
ing crowding-foldable and crowding-non-foldable domains 
[203] (see above), a recent analysis of the effect of poly-
mer and protein crowders on this protein by SANS revealed 
that, at high concentrations of crowding agents, Rg of FlgM 
increases [212]. Furthermore, the conformational ensem-
ble of FlgM was shown to include two major populations, 
collapsed and extended, with compacted conformers being 
able to fit into the voids between the molecules of crowder, 
and with extended conformers being able to bind multiple 
crowders simultaneously, meandering through the crevices 
of the crowded milieu [212].
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IDPs/IDPRs in their natural habitat: effects 
of cellular crowded environment

It is clear that the in vitro modelling of the complex crowded 
cellular environment using high concentrations of macromo-
lecular crowders (artificial, e.g., various synthetic polymers; 
natural, e.g., various inert proteins) is an oversimplification. 
In fact, natural cellular environment is not only character-
ized by the presence of high concentrations of macromolecu-
lar solutes that can exceed 300 mg/mL and occupy > 30% 
of the cellular volume, but also affects the diffusion of a 
target protein, potentially has changed properties of water 
(in comparison with the “bulk” water in typical in vitro 
experiments), and might be engaged in interaction (both 
specific and non-specific) with the target protein, because 
the intracellular environment comprises biologically active 
molecules. To address these possibilities, the analysis of 
protein structure in natural cellular environment should be 
conducted. Although this seems to be an impossible task, 
recent advances in the in-cell NMR spectroscopy, which 
provides structural data at atomic resolution non-invasively, 
have open new horizons in this field [213–217].

Application of this technique to the analysis of the con-
formational behaviour of the aforementioned K×7E form of 
the immunoglobulin G-binding domain of protein L (ProtL) 
from S. magnus with seven lysine residues replaced by glu-
tamic acids inside the E. coli cells revealed that this ProtL 
variant failed to fold [148]. This finding indicated that some 
non-specific interactions between a target protein and cyto-
plasmic components can overcome the stabilizing excluded-
volume effects, which must be present under crowded con-
ditions [148]. Similarly, in-cell NMR analysis of human 
α-synuclein overexpressed in E. coli clearly showed that this 
protein is mostly monomeric and disordered in the bacte-
rial cytosol [218]. Using the NMR experiment SOLEXSY 
(SOLvent EXchange SpectroscopY), to measure the hydro-
gen–deuterium exchange rates of α-synuclein in buffer and 
in E. coli revealed that these rates are similar in buffer and 
cells, further indicating that true disorder can persist inside 
the crowded cellular interior [219]. This idea of the global 
insensitivity of the intrinsically disordered structure of 
human α-synuclein-to-intracellular environment in different 
mammalian cell types was conformed using a combination 
of in-cell NMR with electron paramagnetic resonance (EPR) 
spectroscopy [220]. This study provided atomic-resolution 
insights into the structure and dynamics of α-synuclein in its 
natural environment, and showed that the disordered nature 
of this protein is stably preserved in non-neuronal and neu-
ronal cells [220]. Similarly, in-cell NMR analysis of yeast 
frataxin showed that the intrinsically disordered N-terminal 
tail containing the mitochondrial import signal retained its 

unfolded and highly flexible structure in the cytosol of the 
E. coli cells [221].

As it was already indicated, the Janus protein FlgM 
showed very similar structural behaviour in model crowded 
environment in  vitro and inside the cell, with approxi-
mately half of this IDP-gaining structure inside the living 
E. coli cells and in crowded in vitro solutions [203]. The 
principle similarity of these two structures in natural and 
artificial crowded environments was further supported by 
the SOLEXSY analysis, which failed to find a difference 
between partially folded conformations induced under these 
conditions [219].

Microinjection of 15N-labelled protein Tau into the Xeno-
pus laevis oocytes followed by the in-cell NMR analysis of 
intact oocytes revealed that the in-cell NMR spectrum of 
this protein is similar to the in vitro spectrum of Tau pro-
tein bound to the microtubules [222]. Tau is a neuronal 441 
residue-long protein that regulates polymerization of tubulin 
into microtubules (MTs) and plays a role in the pathogenesis 
of Alzheimer’s disease (AD) [223]. Solution NMR analysis 
of the isotope-labelled Tau in complex with MTs revealed 
that it can be considered as another illustration of Janus pro-
teins. In fact, while multiple signals disappeared in the heter-
onuclear 1H–15N correlation spectrum of its MT-bound state 
due to direct association of the corresponding residue with 
the surface of MTs, a significant portion of Tau remained 
unstructured and projected from the MT surface [224]. 
In these experiments, the NMR signals were lost for the 
 Tau207–421 fragment corresponding to the proline-rich region 
and four microtubule-binding repeats reflecting the immo-
bilization of this region upon binding to the MTs [224]. On 
the other hand, the N-terminal projection domain (residues 
1–151) showed heteronuclear NMR spectrum typical for a 
mostly unfolded polypeptide chain [224]. Very similar NMR 
spectrum was observed for the 15N-labelled Tau injected 
into the X. laevis oocytes [222], indicating that although the 
C-terminal half of Tau protein potentially folds at interac-
tion with cellular MTs, the N-terminal domain preserves it 
highly disordered state even in the highly crowded cellular 
environment [222]. Subsequent structural characterization of 
the MT-bound Tau revealed that interaction with its natural 
partner converts this predominantly disordered protein into 
a partially folded state, where the conserved hexapeptides 
at the beginning of its repeats two and three were converted 
into a β-hairpin conformation [225].

An application of the IDP-tailored J-modulated proton-
less NMR experiment allowing accurate measurement of 
the backbone one- and two-bond J(15N,13Cα) couplings 
provided detailed structural description of the intrinsically 
disordered actin-binding N-terminal domain (residues 2–65) 
of the Wiskott–Aldrich syndrome protein (WASp)-interact-
ing protein (WIP2-65), which is an important regulator of 
cytoskeletal changes in various biological systems [226]. In 
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diluted solutions, WIP2-65 conformational ensemble was 
shown to be resembling the structure assumed by this frag-
ment in its actin-bound form, where residues 28–42 pos-
sessed an α-helical tendency, and the remaining parts of the 
protein were mostly disordered [226]. However, a significant 
decrease in the structural propensity under the influence of 
a bacterial cell lysate was observed by the analysis of the 
J-coupling data, suggesting that cellular crowding caused 
partial unfolding of the residual structure in this IDP, likely 
via protein–protein interactions that stabilized the more 
unfolded state of WIP2-65 [226].

In addition to various NMR techniques, conformational 
behaviour of IDPs inside the living cells can be analyzed by 
FRET. Schuler and co-workers showed recently that con-
focal single-molecule FRET spectroscopy combined with 
intracellular nanosecond fluorescence correlation spec-
troscopy (FCS) can provide important information on the 
dynamics of proteins from the milliseconds to the nanosec-
ond regime in live eukaryotic cells [227]. Here, fluorescently 
labelled proteins [globular yeast frataxin homologue Yft1 
and IgG-binding domain of protein G (GB1), as well as 
an extended IDP ProTα] were microinjected into cultured 
eukaryotic cells in a highly controlled manner, providing 
possibility to precisely control intracellular concentration 
of labelled protein from the picomolar to nanomolar range 
[227]. Comparison of the hydrodynamic dimensions and 
conformational dynamics of ProTα revealed the presence 
of a remarkable similarity between the intra- and extracel-
lular behaviour of this protein [227], indicating that ProTα 
belongs to the category of non-foldable by cellular envi-
ronment IDPs. Furthermore, in line with the well-known 
dependence of the hydrodynamic volume of ProTα on ionic 
strength in vitro, increase in the extracellular salt concen-
tration (which cased transient increase in intracellular ionic 
strength) resulted in noticeable compaction of this protein 
inside the cell [227].

The Fast Relaxation Imaging (FReI) technique represents 
a useful approach that can complement in-cell NMR. FReI 
is pioneered by the group of Martin Gruebele, and repre-
sents a smart combination of FRET imaging of biomolecules 
and biomolecular kinetics induced by the temperature jump 
relaxation, represents a useful approach that can generate 
the movies of fast protein dynamics inside living cells [228]. 
To measure protein dynamics inside the cells, the tempera-
ture of the cell is suddenly jumped by a few degrees using 
an infrared laser, and then, the efficiency of FRET is fol-
lowed by imaging fluorescence in the donor and acceptor 
[228]. Although FReI was originally designed as a means 
for studying folding and stability of globular protein inside 
the living cell and for looking at the effect of the cell on 
protein-free-energy landscapes [229–234], this technique is 
perfectly suited for the analysis of the intracellular confor-
mational behaviour of IDPs [235]. Using this approach, the 

authors showed that an increase in local temperature from 
22.3 to 49 °C resulted in noticeable conformational changes 
in α-synuclein within the cell. In fact, spatial separation of 
the FRET labels increased with the temperature, suggest-
ing that α-synuclein adopted more extended conformation 
at higher temperatures [235]. This is an interesting observa-
tion, showing that cellular environment has a pronounced 
effect on the conformational behaviour of α-synuclein, since, 
in diluted solutions, α-synuclein was shown to gain more 
ordered structure in a temperature-dependent manner, being 
typically more disordered at lower temperatures and more 
structured at higher temperatures due to the enhancement of 
hydrophobic interaction at higher temperatures [236].

Data presented in this section indicate that, based on their 
conformational behaviour in natural cellular environments, 
IDPs/IDPRs are grouped into the familiar classes (partially) 
foldable, non-foldable, and unfoldable, which were already 
described in detail for these proteins/regions in artificial 
crowded environment generated in vitro by high concentra-
tions of polymers or inert proteins.

IDPs/IDPRs in proteinaceous membrane‑less 
organelles: tenacity of disorder 
in the overcrowded milieu

We already indicated that eukaryotic cells and bacteria pos-
sess various PMLOs, which contain specific proteins and 
nucleic acids and are specifically distributed within the cell 
[42, 43, 46]. PMLOs are highly dynamic organelles, whose 
biogenesis and structural integrity depend on unique pro-
tein–protein and protein–nucleic acid interactions [47, 48]. 
PMLOs are characterized by fluid behaviour [50–55], and 
because of the lack of membrane encapsulation, the interior 
of these organelles is freely accessible to the environmental 
cellular fluids, such as nucleoplasm, cytoplasm, matrix, or 
stroma. Formation and disintegration of PMLOs represent 
an illustration of biological liquid–liquid-phase transitions, 
LLPTs [49, 54–60]. The causative local PMLOs result in 
the formation of liquid cellular droplets with high protein 
and nucleic acid concentrations that noticeably exceed con-
tent of these biomacromolecules in dilute phase [55, 56, 60, 
61]. This biological condensation generates an overcrowded 
milieu inside the PMLOs [40]. It was indicated that pro-
teomes of PMLOs are enriched in IDPs/IDPRs, indicating 
that intrinsic disorder plays a crucial role in the fluidity 
and highly dynamic nature of the PMLOs, and also defines 
assembly/disassembly cycles, morphology, and structure 
these overcrowded cellular droplets [40, 41, 43, 46, 58, 
62–69]. Since many IDPs serve as “drivers” of the LLPTs 
leading to the PMLO formation, their concentration inside 
PMLOs can be high. In other words, these IDPs serve as 
crowders themselves. Therefore, it is of interest to see how 
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such self-crowding affects the structural properties of IDPs 
undergoing LLPTs.

Among a multitude of IDPs know to undergo LLPTs 
leading to the formation of PMLOs or liquid droplets in vitro 
is a Fused in Sarcoma (FUS) protein, which is an RNA-bind-
ing protein, associated with pathogenesis of amyotrophic 
lateral sclerosis (ALS) and frontotemporal dementia (FTD) 
and also related to the chromosomal translocation in certain 
sarcomas and leukemias. The low-complexity (LC) N-ter-
minally-located domain of FUS (residues 1–163) was shown 
to undergo phase separation associated with the formation 
of ribonucleoprotein (RNP) granules [237]. When solu-
tion NMR spectroscopy was utilized to directly probe the 
structural organization FUS liquid-phase-separated assem-
blies, it was found that the LC domain of FUS (which is a 
typical IDP in diluted solution) mostly retained disordered 
structure even in the liquid-phase-separated state [237]. 
This was demonstrated by an overlay of the 1H–15N and 
1H–13C heteronuclear single-quantum coherence (HSQC) 
spectra measured for the dispersed FUS LC (50 μM) and 
for the liquid-phase-separated protein (7 mM FUS LC) that 
showed high similarity [237]. It was pointed out that, since 
NMR spectra recorded for the phase-separated and dispersed 
phases of this protein lack large chemical-shift differences, 
the FUS remains disordered in the phase-separated state and, 
therefore, the LLPT is not accompanied by significant con-
formational changes of the LC domain of FUS protein [237].

Elastin-like polypeptides (ELPs) derived from the 
monomer of elastin, tropoelastin that can undergo LLPT 
[238–240], serve as a useful proxies for the analysis of the 
molecular mechanisms underlying phase separation in pro-
tein solutions [69, 241–244]. The 1H–15N HSQC analysis 
of one of such ELPs revealed that this model polypeptide 
is highly disordered in both the monomeric and phase-
separated states [245] This conclusion was supported by 
the 2D 1H–1H nuclear Overhauser effect spectroscopy 
(NOESY) experiments reporting the through–space inter-
actions between 1H nuclei, which also indicated that this 
ELP retained disordered structure in the phase-separated 
state [245]. Careful analysis of the NOEs arising from short-
range interactions between protons in the protein backbone 
revealed the presence of two distinct type-II β-turns centred 
on the VPGV and GVGV sequences of both monomeric and 
phase-separated ELP [245]. Finally, analysis of the 13C and 
12C edited 1H–1H NOESY spectra recorded for monomeric 
and phase-separated samples containing a 1:1 mixture of 
unlabelled and 13C-labelled ELP revealed the presence of 
multiple non-specific inter-molecular hydrophobic contacts 
within the phase-separated ELP [245].

Analysis of the structural properties of the lysine-rich 
microtubule-binding repeats of Tau protein, which are able 
to undergo liquid–liquid-phase separation in solution, by 
solution NMR provided some important insights into this 

problem [246]. In fact, besides generating very impor-
tant observations that the microtubule-binding repeats of 
Tau can form liquid droplets in a phosphorylation-spe-
cific manner and that the efficiency of the Tau demixing 
depends on the number of the microtubule-binding repeats 
(with three-repeat and four-repeat isoforms of Tau being 
different in their ability for demixing), this study clearly 
showed that Tau protein mostly preserves its intrinsically 
disordered nature inside the Tau-containing membrane-
less compartments [246]. In fact, a two-dimensional 
1H–15N correlation NMR spectra recorded for the repeat 
domain of Tau before and after temperature-induced LLPT 
were characterized by small-signal dispersion typical of 
the mostly disordered polypeptide chain [246]. However, 
more detailed analysis of the 1H–13C correlation spectra 
of Tau protein labelled with the paramagnetic nitroxide 
tag (1-oxy-2,2,5,5-tetramethyl-d-pyrroline-3-methyl)-
methanethiosulfonate (MTSL) attached to the two native 
cysteines,  C291 and  C322, revealed that in its droplet state, 
the aggregation-prone hexapeptides of Tau protein (resi-
dues 275VQIINK280 and 306VQIVYK311) are engaged in 
the intensive intra- and inter-molecular interactions [246]. 
These observations indicated that, in the phase-separated 
state, the amyloid hot spots of Tau protein are engaged in 
the formation of the dynamic molecular mesh, whereas 
the most parts of this protein retained their intrinsically 
disordered status [246].

Application of the heteronuclear solution NMR spec-
troscopy to the analysis of the intrinsically disordered 
N-terminal domain (residues 1–236) of the germ-granule 
protein Ddx4 provided further support to the idea that an 
IDP can continue to be mostly disordered within the highly 
concentrated phase-separated state [247]. Being a germ cell-
specific protein, Ddx4 serves as the major component of 
the specific PMLOs, nuage/chromatoid bodies, found in the 
cytoplasm of spermatocytes and spermatids [248]. Ddx4 
can be divided into several structural and functional regions, 
such as a long N-terminal disordered tail (residues 1–260), a 
catalytic helicase ATP-binding domain (residues 319–502), 
a helicase C-terminal domain (residues 350–675), and a rela-
tively short disordered C-terminal tail (residues 690–724). 
The 1H–15N and 1H–13C correlation spectra recorded for 
the concentrated phase of the Ddx4cond form (which is the 
phase-separated state of the N-terminal domain of Ddx4 
with the protein concentration of 380 mg/mL) were char-
acterized by the sharp resonances, low-signal dispersion, 
and chemical shifts typical of the intrinsically disordered 
proteins, indicating mostly disordered state of Ddx4cond in 
the phase-separated form [247]. The authors also indicated 
that there was no noticeable line broadening of resonances 
in the 1H–13C spectra of Ddx4cond relative to spectrum of 
this protein in diluted form and only minor chemical-shift 
changes were detected. However, in the phase-separated 
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state, Ddx4 diffused noticeably slower (~ 100-fold) than in 
its diluted form [247]. This slowed Ddx4 diffusion in the 
Ddx4cond state was attributed to the presence of a network 
of interchain interactions, mostly between Phe and Arg resi-
dues [247] needed for the establishing both cation–π and 
π–π interactions that can be crucial for driving the phase 
separation of Ddx4 and for the Ddx4cond stabilization [60].

NMR-based analysis of the low-complexity (LC) 
domain of the heterogeneous nuclear ribonuclear protein-2 
(hnRNPA2) that serves as a component of the RNA-pro-
cessing PMLOs and play a role in the mRNA transport and 
that is able to undergo LLPT [249] revealed that this domain 
remains predominantly disordered in the phase-separated 
state [250]. It was emphasized that, similar to Ddx4, the 
condensed phases of the hnRNPA2 LC domain formed by 
LLPT are highly concentrated and contain ~440 mg/mL 
(~ 30 mM) of the protein [250], suggesting that excessive 
self-crowding has minimal effect of highly dynamic struc-
ture of these IDPs.

Data presented in this section suggest that proteins capa-
ble of LLPT and used in the PMLO biogenesis are character-
ized by structures that are minimally affected by the forma-
tion of highly concentrated phases. In fact, these proteins 
are minimally foldable or even non-foldable at all (at least 
within the limited time period) in the extremely self-crowded 
milieus of their phase-separated states. It is likely that such 
insensitivity of disordered structure of these LLPT-driving 
proteins to self-crowding (once again, within the limited 
time period) is related to the biogenesis of PMLOs, which 
are typically present in the cell for some limited time. In fact, 
some PMLOs are known to be metastable systems that can 
undergo “maturation”, with their “aging” leading to subse-
quent transformation of corresponding systems into gels or 
glass [251]. In other words, biogenesis of PMLOs is a highly 
dynamic process, and, being formed, many PMLOs exist for 
the limited time. Within this physiologically safe time-frame 
of their normal existence, PMLOs are reversible and can 
undergo disassembly process when not needed. However, 
under pathological conditions, the biogenesis of PMLOs can 
be altered, and they could exist for prolonged time, leading 
to some irreversible changes in the system. In fact, although 
“freshly” generated droplets formed by the proteins undergo-
ing LLPTs can easily disassemble by changes in their envi-
ronment, over time, these droplets can mature to more stable 
states [58, 252], likely due to the formation of amyloid-like 
fibrils characterized by very high conformational stability. 
This is because many proteins found in RNP granules con-
tain not only RNA-binding domains but also prion-related 
low-complexity sequences capable of pathogenic aggrega-
tion [58]. In other words, since aggregation and fibrillation 
are strongly concentration-dependent, dysregulated PMLOs 
(i.e., PMLOs existing for the period of time exceeding the 
aforementioned physiologically safe time-frame), with their 

locally increased concentrations of specific proteins, might 
inadvertently serve as a kind of amyloid “incubators”.

Conclusions

Because of their mosaic architecture, structures of IDPs or 
IDPRs can be extremely sensitive to changes in their envi-
ronment and could be responsive to the presence of crowd-
ing agents. Based on the data presented in this review it is 
clear that the behaviour of IDPs at the conditions of mac-
romolecular crowding is very complex. Despite the fact 
that, based on the thermodynamic principles of excluded 
volume, according to which the presence of a space-fill-
ing substance would favour a more compact state over the 
more extended form, it was expected that IDPs/IDPRs 
should undergo efficient folding and compaction under 
the conditions of macromolecular crowding, the number 
of disordered proteins/domains that actually undergo a sig-
nificant folding in crowded environment is rather limited. 
In fact, different IDPs/IDPRs show very different response 
to the presence of artificial- and natural-crowding agents, 
and can be grouped into three major categories (partially) 
foldable, non-foldable, and unfoldable by macromolecular 
crowding. The fact that only some IDPs (partially) fold in 
crowded environment and that the global structure of many 
IDPs seems to be insensitive to the presence of crowding 
agents is not too surprising, since the anticipated overall 
contribution of the macromolecular crowing to the total 
free energy of the medium is not too high. Therefore, it is 
expected that the outputs of the presence of macromolecu-
lar crowders in the solution of a query protein will depend 
on the conformational stability of this protein in terms of 
its proximity to the transition region describing its poten-
tial structural transformation from a highly disordered to 
ordered state.

This point is illustrated by Fig. 1, representing an over-
simplified model of structural transitions in a disordered 
protein induced by changes in its environment. It is seen 
that the end result (2, 3, 4, or 5) associated with the addition 
of crowder to the solution of an IDP depends on the remote-
ness of the position of this protein from the transition region 
in crowder-free environment. In other words, although the 
distances  X1 → X2,  X1′ → X3,  X1″ → X4, and  X1′′′ → X5 are 
identical, they induce very different changes in the confor-
mational state of a query protein (ΔY1→2, ΔY1′→3, ΔY1″→4, 
and ΔY1′′′→5). One should also keep in mind that because 
of the highly heterogeneous spatio-temporal organization of 
a typical IDP containing regions with the different degrees 
of (dis)order (foldons, non-foldons, inducible foldons, and 
semi-foldons, see above), these differently (dis)ordered 
regions are expected to differently react to the addition of 
crowders. In other words, in addition to being applicable to 
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the whole protein, a model presented in Fig. 1 can describe 
crowding-modulated behaviour of its regions that can differ-
ently fold in the presence of crowding agents.

It was also pointed out that the biological macromole-
cules are not inactive entities that serve as inert placeholders 
that simply restrict cellular volume accessible to a query pro-
tein, but instead can be involved in specific and non-specific 
interactions with this protein. As a result, crowded cellular 
environment can induce both (partial) excluded-volume-
driven folding and (partial) interaction-modulated unfolding 
of a target protein or its parts (unfoldons). Therefore, since 
crowding can cause both folding and unfolding of an IDP 
or its regions, the outputs of the placing of a query protein 
to the crowded environment would depend on the balance 
between these two processes. As a result, macromolecular 
crowding would differently affect the structures of different 
IDPs.

Finally, a note should be added on the peculiar capabil-
ity of some IDPs to undergo LLPTs, thereby generating 
self-crowded PMLOs. An important feature of such IDPs is 
relative insensitivity of their structure to the self-crowded 
environment (in fact, they are minimally foldable or even 
non-foldable at all) and the ability to avoid pathological 
association and aggregation at least during the limited time 
of the physiological existence of PMLOs. It is likely that 
this capability to phase separate but sustain local increase in 
concentration without undergoing pathological aggregation 

(at least for a limited time period) represents an important 
factor driving the evolution of IDPs that contribute to the 
PMLO biogenesis. One of the features of such IDPs is 
either their overall high net charge or the presence of highly 
charged patches. This allows such IDPs to be engaged in 
the formation of unique complexes, which, despite being 
characterized by high affinity, show no evidence of folding 
of the constituents that continue to be highly dynamic and 
completely disordered in their bound state. The molecular 
mechanism behind the formation of such tight but highly 
dynamic complexes is based on strong electrostatic attrac-
tion between oppositely charged polypeptides (or oppositely 
charged regions of a given protein). It is likely that such 
a kind of global electrostatic attraction does not require 
defined binding sites or interactions between specific indi-
vidual residues. Instead, any charged residue of one polypep-
tide chain (or protein region) can efficiently interact with any 
oppositely charged reside of another polypeptide chain (or 
protein region). The possibility of the existence of such kind 
of complexes, where despite picomolar affinity partners do 
not fold, being highly dynamic and completely disordered 
in bound state, was recently demonstrated for a complex 
between two highly charged and highly disordered proteins, 
human histone H1 and ProT-α [253].

Fig. 1  Oversimplified representation of structural transitions induced 
in a disordered protein by crowded environment. The overall contri-
bution of macromolecular crowing to the total free energy of a system 
is the same in all four scenarios. The outputs of the presence of crow-
ders will depend on the conformational stability of a query protein 
in terms of its proximity to the transition region describing structural 
transformation of an IDP from highly disordered to ordered state. 

In this model, the end result (2, 3, 4, or 5) associated with the addi-
tion of crowder to the solution of an IDP depends on a remoteness 
of the position of this protein from the transition region in crowder-
free environment. In other words, although the distances  X1 → X2, 
 X1′ → X3,  X1″ → X4, and  X1′′′ → X5 are identical, they induce very dif-
ferent changes (ΔY1→2, ΔY1′→3, ΔY1″→4, and ΔY1′′′→5) in the confor-
mational state of a query protein
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